
1

Intermediate Representations

Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved.
Students enrolled in Comp 412 at Rice University have explicit permission to make copies
of these materials for their personal use.
Faculty from other educational institutions may use these materials for nonprofit
educational purposes, provided this copyright notice is preserved.

Most of the material in
this lecture comes from
Chapter 5 of EaC2

Note by Baris Aktemur:
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412
at Rice.

1

Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes

Front
End

Middle
End

Back
End

IR IRSource
Code

Target
Code

2

Comp 412, Fall 2010 2

Traditional Three-part Compiler

Errors

Source
Code

Optimizer
(Middle End)

Front
End

Machine
code

Back
End

IR IR

3

Beyond Syntax
There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d) {
int a, b, c, d;

…
}

fee() {
int f[3],g[0], h, i, j, k;
char *p;

fie(h,i,“ab”,j, k);
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• number of args to fie()
• declared g[0], used g[17]
• “ab” is not an int
• wrong dimension on use of f
• undeclared variable q
• 10 is not a character string

All of these are
“deeper than syntax”

3

4

Beyond Syntax
To generate code, the compiler needs to answer many questions
• Is “x” a scalar, an array, or a function? Is “x” declared?
• Are there names that are not declared? Declared but not used?
• Which declaration of “x” does a given use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored? (register, local, global, heap, static)
• In “f ¬ 15”, how should 15 be represented?
• How many arguments does “fie()” take? What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These are beyond the expressive power of a CFG

Semantic Analysis
• Before we transform the program (e.g. AST) into IR, we

need to make sure it is semantically sane.
• Type checking…
• Will skip this part. See CS 321 content.

4

• We are on the cusp of the art, science, & engineering of
compilation

• Scanning & parsing are applications of automata theory
• The mid-section of the course will focus on issues where the

compiler writer needs to choose among alternatives
— The choices matter; they affect the quality of compiled code
— There may be no “best answer” or “best practice”

The fun begins at this point

6

Where In The Course Are We?

7

Intermediate Representations
• Decisions in IR design affect the speed and efficiency

of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between
compilers
— Selecting an appropriate IR for a compiler is critical

5

8

Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs

Examples:
3 address code
Stack machine code

Example:
Control-flow graph

9

Three Address Code
Several different representations of three address code
• In general, three address code has statements of the form:

x ¬ y op z
With 1 operator (op) and, at most, 3 names (x, y, & z)

Example:
z ¬ x - 2 * y becomes

• Resembles many real machines
• Introduces a new set of names

t ¬ 2 * y
z ¬ x - t

*

6

10

Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load r1, y
loadI r2, 2
mult r3, r2, r1
load r4, x
sub r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”

11

Three Address Code: Triples
• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space

7

12

Two Address Code
• Allows statements of the form

x ¬ x op y
Has 1 operator (op) and, at most, 2 names (x and y)

Example:
z ¬ x - 2 * y becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t1 ¬ 2
t2 ¬ load y
t2 ¬ t2 * t1
z ¬ load x
z ¬ z - t2

13

Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear
representation

• Edges in the graph represent control flow

Example
if (x = y)

a ¬ 2
b ¬ 5

a ¬ 3
b ¬ 4

c ¬ a * b

Basic blocks —
Maximal length
sequences of
straight-line code

8

Exercise: Draw the CFG

Exercise: Draw the CFG

9

16

Static Single Assignment Form
• The main idea: each name defined exactly once
• Introduce f-functions to make it work

Strengths of SSA-form
• Sharper analysis
• f-functions give hints about placement
• (sometimes) faster algorithms

Original

x ¬ …
y ¬ …
while (x < k)

x ¬ x + 1
y ¬ y + x

SSA-form

x0 ¬ …
y0 ¬ …
if (x0 >= k) goto next

loop: x1 ¬ f(x0,x2)
y1 ¬ f(y0,y2)
x2 ¬ x1 + 1
y2 ¬ y1 + x2
if (x2 < k) goto loop

next: …

