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Most of the material in 
this lecture comes from 
Chapter 5 of EaC2

Note by Baris Aktemur: 
Our slides are adapted from Cooper and Torczon’s slides that they prepared for COMP 412 
at Rice.
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Intermediate Representations

• Front end - produces an intermediate representation (IR)
• Middle end - transforms the IR into an equivalent IR that 

runs more efficiently
• Back end - transforms the IR into native code

• IR encodes the compiler’s knowledge of the program
• Middle end usually consists of several passes
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Beyond Syntax
There is a level of correctness that is deeper than grammar

To generate code, we need to understand its meaning !

fie(a,b,c,d) {
int a, b, c, d;

… 
}

fee() {
int f[3],g[0], h, i, j, k;
char *p;

fie(h,i,“ab”,j, k); 
k = f * i + j;
h = g[17];
printf(“<%s,%s>.\n”,p,q);
p = 10;

}

What is wrong with this program?
(let me count the ways …)

• number of args to fie()
• declared g[0], used g[17]
• “ab” is not an int
• wrong dimension on use of f
• undeclared variable q
• 10 is not a character string

All of these are 
“deeper than syntax”
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Beyond Syntax
To generate code, the compiler needs to answer many questions 
• Is “x” a scalar, an array, or a function?  Is “x” declared?
• Are there names that are not declared?  Declared but not used?
• Which declaration of “x” does a given use reference?
• Is the expression “x * y + z” type-consistent?
• In “a[i,j,k]”, does a have three dimensions?
• Where can “z” be stored?            (register, local, global, heap, static)
• In “f ¬ 15”, how should 15 be represented?
• How many arguments does “fie()” take? What about “printf ()” ?
• Does “*p” reference the result of a “malloc()” ?  
• Do “p” & “q” refer to the same memory location?
• Is “x” defined before it is used?

These are beyond the expressive power of a CFG

Semantic Analysis
• Before we transform the program (e.g. AST) into IR, we 

need to make sure it is semantically sane.
• Type checking…
• Will skip this part. See CS 321 content.
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• We are on the cusp of the art, science, & engineering of 
compilation

• Scanning & parsing are applications of automata theory
• The mid-section of the course will focus on issues where the 

compiler writer needs to choose among alternatives
— The choices matter; they affect the quality of compiled code
— There may be no “best answer” or “best practice”

The fun begins at this point
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Where In The Course Are We?
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Intermediate Representations
• Decisions in IR design affect the speed and efficiency 

of the compiler

• Some important IR properties
— Ease of generation
— Ease of manipulation
— Procedure size
— Freedom of expression
— Level of abstraction

• The importance of different properties varies between 
compilers
— Selecting an appropriate IR for a compiler is critical
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Types of Intermediate Representations
Three major categories
• Structural

— Graphically oriented
— Heavily used in source-to-source translators
— Tend to be large

• Linear
— Pseudo-code for an abstract machine
— Level of abstraction varies
— Simple, compact data structures
— Easier to rearrange

• Hybrid
— Combination of graphs and linear code
— Example: control-flow graph

Examples:
Trees, DAGs 

Examples:
3 address code
Stack machine code 

Example:
Control-flow graph 
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Three Address Code
Several different representations of three address code
• In general, three address code has statements of the form:

x ¬ y op z
With 1 operator (op ) and, at most, 3 names (x, y, & z)

Example:
z ¬ x - 2 * y becomes

• Resembles many real machines
• Introduces a new set of names

t ¬ 2 * y
z ¬ x - t

*



6

10

Three Address Code: Quadruples
Naïve representation of three address code
• Table of k * 4 small integers
• Simple record structure
• Easy to reorder
• Explicit names

load 1 y

loadi 2 2

mult 3 2 1

load 4 x

sub 5 4 3

load  r1, y
loadI r2, 2
mult  r3, r2, r1
load  r4, x
sub   r5, r4, r3

RISC assembly code Quadruples

The original FORTRAN
compiler used “quads”
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Three Address Code: Triples
• Index used as implicit name
• 25% less space consumed than quads
• Much harder to reorder

Remember, for a long time, 640Kb was a lot of RAM

(1) load y

(2) loadI 2

(3) mult (1) (2)

(4) load x

(5) sub (4) (3)

Implicit names occupy no space
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Two Address Code
• Allows statements of the form

x ¬ x op y
Has 1 operator (op ) and, at most, 2 names (x and y)

Example:
z ¬ x - 2 * y becomes

• Can be very compact

Problems
• Machines no longer rely on destructive operations
• Difficult name space

— Destructive operations make reuse hard
— Good model for machines with destructive ops (PDP-11)

t1 ¬ 2
t2 ¬ load y
t2 ¬ t2 * t1
z ¬ load x
z ¬ z - t2
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Control-flow Graph
Models the transfer of control in the procedure
• Nodes in the graph are basic blocks

— Can be represented with quads or any other linear 
representation

• Edges in the graph represent control flow

Example
if  (x = y)

a ¬ 2
b ¬ 5

a ¬ 3
b ¬ 4

c ¬ a * b

Basic blocks —
Maximal length 
sequences of 
straight-line code
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Exercise: Draw the CFG

Exercise: Draw the CFG
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Static Single Assignment Form
• The main idea:  each name defined exactly once
• Introduce f-functions to make it work

Strengths of SSA-form
• Sharper analysis
• f-functions give hints about placement
• (sometimes) faster algorithms

Original

x ¬ …
y ¬ …
while (x < k)

x ¬ x + 1
y ¬ y + x

SSA-form

x0 ¬ …
y0 ¬ …
if (x0 >= k) goto next

loop: x1 ¬ f(x0,x2)  
y1 ¬ f(y0,y2)
x2 ¬ x1 + 1 
y2 ¬ y1 + x2
if (x2 < k) goto loop

next:     …            


